Showing posts with label International Space Station. Show all posts
Showing posts with label International Space Station. Show all posts

Wednesday, March 28, 2012

The Russian ISS Space Toilet

In early March I visited several class rooms, libraries and science museums in the greater San Francisco Bay Area as part of "Destination Station", the traveling exhibit about the International Space Station (coming to North Caroline and then Boston next). There was not one day without somebody asking "How do Astronauts go to the bathroom in Space?". That question was not only asked by kids (mostly though), but by adults as well. With my very unique experiences in that field, I consider myself a good subject to talk a little more about this. But I did get help from people like Astronaut Chris Hadfield and Mike Massimino (see their videos on the bottom).

After learning about the Russian electrical food warmer on the International Space Station, Canadian Astronaut David Saint-Jacques took me to the Russian toilet trainer. Just glancing at this toilet you realize it has no whistles and thrills. Come to realize, neither would really help me anyway! I already have a hard time going to the bathroom as it is without any thrills and since whistling is considered rude here in Russia, I can see why there is none of that going on in the bathroom!

Today in Star City, Russia
September 2010 in Houston, Texas.
There are two toilets on the International Space Station, located in the Zvezda and Tranquility modules. First of all, the principles of space toilets:

There are Liquid and solid wastes (#1 and #2, as they generally get interpreted) and they are trapped separately and processed separately. Air pressure (suction) is used to encourage/directed/wished for (you name it) waste to move in the right direction. Poo really can fly in space.

The primary rule of operation is always to prepare the loo after use, so that it's ready for the next guy. It's a simple rule to remember: After Pee or Poo, quickly prepare the Loo, so the crew doesn't have to wait in queue to let go the dew.

Assuming all systems are functioning, it should be possible to "fire" the toilet up in just a couple of minutes. I think it is an awkward process in the mockup, where gravity keeps everything in place. I don't know if it would be easier or more difficult in zero-G. There is a little seat in a wood finish here on the trainer. A nice touch indeed from the Russians! Below the seat is a disposable tank for solid waste. The hole in the seat should be pre-lined with a single-use packet. Assume the position. Then there is a receptacle with a funnel and hose that will grab liquid waste. It's very important to aim at the funnel from a distance away, rather than trying to get too intimate with it once the suction is under way. This point was stressed repeatedly and I think to remember why. I had an experience on the Space Shuttle potty trainer with Astro Clay...

The first thing that spins up is the urine/air separator motor. This is because we don't want any urine to get sucked into the fan, which would be a mess. So first we have to be sure we can separate urine from the air stream that pulls it along. This is done in a centrifuge. If you spin a mixture of heavy and light fluids together, the heavier stuff goes to the outside. In weightlessness, this is how they separate urine from air.

Once that device is spinning fast enough, a dose of urine preservative (mostly sulphuric acid and chrome trioxide) is flushed into the separator. This is to prevent crystals of urea or other contaminants forming in the plumbing, or in the tanks. This is another complication - we don't want nasty stuff like sulphuric acid to leak into the ISS. Horrible things could happen (far worse than if urine leaked into the compartment). So the tank that stores the preservative has to be triply redundant and extremely robust, and all the pipes have to have double layers and be resistant to acid corrosion.

What's really amazing is how accessible all of these components are. Simply lift up the floor panels around the loo, or open up the wall panel, and you can replace any pump, fan, device or tank. It has to be that way... this is a mission critical system!

And just this week the crew on the ISS had to do some toilet repairs. 



Here are some additional pictures from the Russian space toilet inside the Zvezda module

Japan Aerospace Exploration Agency (JAXA) astronaut Koichi Wakata, Expedition 19/20 flight engineer, performs the daily ambient flush of the potable water dispenser in the waste and hygiene compartment.
ISS toilet and the KTO container in the Russian Zvezda module
The urine collection system panel
A female urine collection cup
A male urine collection cup
The solid waste collection bag. It locks on to a ring under the toilet/commode seat and dangles inside the silver KTO container. When you are finished you just tug on the red tab. That action unseats the bag from the seat lip and airflow pulls the bag inside the KTO container. The red tab is connected to a drawstring encircling the bag’s opening. As the bag is sucked into the KTO you hang on to the red tab and the bag pulls itself shut, when it shuts you let go and it disappears inside the KTO.

Canadian Astronaut and soon to be 
1st Canadian Commander of the ISS Chris Hadfield:


NASA Astronaut Mike Massimino




** some information I got from Mark Shuttleworth who trained in Star City and spent almost 10 days in Space in 2002. 

Being intimate with the Russian ЭПП Electrical Food Warmer

 

Today was a fairly easy day. Canadian Astronaut David Saint-Jacques (he is @Astro_DavidS on Twitter) and I were learning about some of the ISS components inside the Russian segments. First, let me tell you a little about David. 

(on a site note, when we first met, he reminded me of The Wiz in Seinfeld - I wish I had a crown with me for him to put on! Ok, off topic, sorry David)

Born in Quebec, raised outside of Montreal, Canada, David speaks French and English fluently. But not just that. He has a pretty good handle on Spanish, Russian and Japanese! What's even more amazing, David has a medical background and an astrophysics one! Plus he has a commercial pilot license! His postdoctoral research included the development and application of the Mitaka Infrared Interferometer in Japan and the Subaru Telescope Adaptive Optics System in Hawaii.

After that he joined the Astrophysics group at Université de Montréal. His international experience also includes engineering study and work in France and Hungary and medical training in Lebanon and Guatemala.

In October of 2011 David was part of the NASA Extreme Environment Mission Operations project, known as NEEMO. 


NEEMMO sends groups of astronauts, engineers, doctors and professional divers to live in an underwater habitat for up to three weeks at a time. These crew members, called aquanauts, live in Aquarius, the world's only undersea laboratory, located about 19 metres below the surface, 5.6 km off Key Largo in the Florida Keys.

David was a crew member of NEEMO 15, the first undersea mission to simulate a visit to an asteroid. For part of the mission, he was supported by his colleague CSA Astronaut Jeremy Hansen who, as CAPCOM, provided information and directions from the Key Largo surface to the NEEMO 15 team.

The undersea environment is the closest analogue on Earth to a gravity-weak asteroid, making it the best place to test relevant exploration concepts. During NEEMO 15 the crew evaluated different strategies for anchoring themselves to its surface, traveling along its terrain and collecting data. They also coordinated their efforts with DeepWorker submersibles, one-seater submarines built and developed by Nuytco in British Columbia, Canada.


Told you, David is another one of those interesting people to get to meet and know. 


Anyway, today I learned about the Russian ЭПП Food Warmer. David told me to get "intimately" familiar with the device. Since I always follow instructions...

The electric food warmer is designed to heat foods in cans, and plastic pouches.

The ЭПП consists of a heater, an automated unit, and a control panel. The warmer contains a number of cells for heating food. The heating elements inside the cells conform to the shape of the various packages.

The Service Module has two food warmers, “Подогреватель пищи 1”, “Подогреватель пищи 2” (Food warming 1, Food warming 2), connected to onboard outlets. The foods are warmed to 65°C (149°F) within 30 minutes. The food warmer operates automatically. The foods are inserted into the warmer to the maximum depth of the cells. Any combination of foods may be warmed – from one meal ration to four.






I am glad that David realized that giving me instructions like "get yourself intimately familiar with..." just don't work all that well with me. Glad we first learned about the food warmer and not the Russian space toilette...